Abstract

The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call