Abstract

Traditional antibiotics usually sterilize in chemical ways, which may lead to serious drug resistance. By contrast, peptide-based antibacterial materials are less susceptible to drug resistance. Herein we report the preparation of an antibacterial peptide-based copolymer micelle and the investigation of its membrane-penetration antibacterial mechanism by transmission electron microscopy (TEM). The copolymer is poly(l-lactide)-block-poly(phenylalanine-stat-lysine) [PLLA31-b-poly(Phe24-stat-Lys36)], which is synthesized by ring-opening polymerization. The PLLA chains form the core, whereas the polypeptide chains form the coronas of the micelle in aqueous solution. This micelle boasts excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Furthermore, TEM studies clearly reveal that the micelles pierce and then destroy the cell membrane of the bacteria. We also compared the advantages and disadvantages of two general methods for measuring the Minimal Inhibitory Concentration (MIC) values of antibacterial micelles. Overall, this study provides us with direct evidence for the antibacterial mechanism of polypeptide-based micelles and a strategy for synthesizing biodegradable antibacterial nanomaterials without antibiotic resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.