Abstract

We have developed a targeted nano-drug delivery system that effectively harnesses the anti-tumor properties of trifluoperazine (TFP), while concurrently mitigating its side effects on the central nervous system. The manufacturing process entailed the preparation of mesoporous silica nanoparticles (MSN-NH2), followed by the loading of trifluoperazine into the pores of MSN-NH2 and then surface modification with polyethylene glycol (PEG) and anisamide (AA), resulting in the formation of TFP@MSN@PEG-AA (abbreviated as TMPA) nanoparticles. In vitro and in vivo anti-tumor activity and hemolysis experiments showed that TMPA had an excellent safety profile and a good anti-tumor effect. Importantly, the drug content of the TMPA nanoparticle group was found to be significantly lower than that of the TFP group in the mouse brain tissue as determined by High Performance Liquid Chromatography (HPLC) detection. Therefore, the developed drug delivery system achieved the goal of maintaining TFP's anti-tumor action while avoiding its negative effects on the central nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.