Abstract

Copper (Cu) nanocomposite catalysts with gallium (Ga) and aluminum (Al) were prepared using the simultaneous co-precipitation digestion method. The catalysts were characterized by N2 adsorption, N2O titration, XRD (X-ray diffraction), H2-TPR (H2 temperature-programmed reduction), XPS (X-ray photoelectron spectroscopy), and CO2-TPD (CO2 temperature-programmed desorption) techniques, and CO2 hydrogenation to methanol synthesis was performed. The use of Ga in Cu catalysts enhanced the weak basic sites more than the Cu catalysts with Al. With the CuGa nanocomposite formation, the catalyst showed a sequential reduction of CuO, for example, Cu+2 to Cu+ to Cu0, and the Cu surface area was also high in comparison with CuAl. These findings confirmed that both the Cu surface area and CuO reducibility in the catalyst helped to boost the conversion of CO2, whereas selectivity to methanol was associated with the basicity of the catalyst. CuAl catalysts showed very poor selectivity to methanol despite CO formation, which could be due to the weak interaction of the CuAl nanocomposite catalysts compared to the CuGa nanocomposite catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.