Abstract

Additive Manufacturing (AM) has been recognized as a highly versatile manufacturing method with high potentiality. Polymers are materials of central importance for AM specifically for fabrication of original and customized parts. However, most of the polymers currently in use derive from fossil sources, which extensive use represents a critical issue for the environment. This scenario encourages the use of sustainable and biodegradable biopolymers. The present paper focuses on the study of the printability of a bio-based powder, starting from an aromatic‐aliphatic biodegradable polyester, poly (butylene adipate-co-terephthalate) (PBAT), as sustainable alternative for Selective Laser Sintering (SLS) conventional materials. Bio-based polymers represent environmentally friendly materials that can be suitable for AM, although several problems still need to be solved for SLS applications. In fact, it is challenging to produce polymeric powders with specific particle size and size distribution, spherical shape, good flowability and processability. From this point of view, PBAT powder was prepared by means of an emulsion solvent evaporation method, characterized from morphological and thermal points of view, and then successfully used for SLS process, with the aim to obtain novel 3D printed objects using for the first time this biodegradable polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call