Abstract

Extremes in body condition reduce fertility and overall productivity in beef cattle herds, due in part to altered systemic metabolic conditions that influence the intrafollicular and uterine environment. Follicular fluid and serum metabolome profiles are influenced by body composition in women and dairy cattle; however, such information is lacking in beef cattle. We hypothesized that body condition score (BCS)-related alterations in the metabolome of preovulatory follicular fluid and serum may influence oocyte maturation while impacting the oviductal or uterine environment. Therefore, we performed a study with the objective to determine the relationship between BCS and the metabolome of follicular fluid and serum in lactating beef cattle. We synchronized the development of a preovulatory follicle in 130 cows of varying BCS. We collected blood and performed transvaginal follicle aspirations to collect follicular fluid from the preovulatory follicle ~18 h after gonadotropin-releasing hormone administration to stimulate the preovulatory gonadotropin surge. We then selected follicular fluid and serum samples from cows with BCS 4 (Thin; n = 14), BCS 6 (Moderate; n = 18), or BCS >8 (Obese; n = 14) for ultra-high performance liquid chromatography-high resolution mass spectrometry. We identified differences in the follicular fluid or serum of thin, moderate, and obese animals based on multiple linear regression. MetaboAnalyst 5.0 was used for enrichment analysis of significant metabolites. We identified 38 metabolites in follicular fluid and 49 metabolites in serum. There were no significant differences in follicular fluid metabolite content among BCS classifications. There were 5, 22, and 1 serum metabolites differentially abundant between thin-obese, moderate-thin, and moderate-obese classifications, respectively (false discovery rate [FDR] < 0.10). These metabolites were enriched in multiple processes including "arginine biosynthesis," "arginine/proline metabolism," and "D-glutamine/D-glutamate metabolism" (FDR < 0.04). Pathways enriched with serum metabolites associated with BCS indicate potentially increased reactive oxygen species (ROS) in serum of thin cows. ROS crossing the blood follicular barrier may negatively impact the oocyte during oocyte maturation and contribute to the reduced pregnancy rates observed in thin beef cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.