Abstract

[structures: see text] In this article we describe a rational approach for prefixing multiple cooperative binding sites in an ideal spatial arrangement on a structurally rigid backbone, constrained exclusively by intramolecular hydrogen bonding. The idea is exemplified by the ability of the self-assembling constructs 1a-e and 2a,b to form hydrogen-bonded dimers, whose structural preorganization has been solely effected by intramolecular hydrogen bonding. The readily accessible amidinourea backbone has been used as a common platform for the construction of a variety of such self-assembling systems. ESI mass spectrometry and single-crystal X-ray diffraction studies have been particularly effective in investigating the self-assembling propensities of these systems. Remarkably, most the H-bonded dimers reported herein undergo an unusual mode of self-assembly, using intermolecular four-membered ring hydrogen-bonded interaction, affording extended supramolecular networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.