Abstract
Background: this study aimed to utilize various diffusion-weighted imaging (DWI) techniques, including mono-exponential DWI, intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI), for the preoperative grading of rectal cancer. Methods: 85 patients with rectal cancer were enrolled in this study. Mann-Whitney U tests or independent Student's t-tests were conducted to identify DWI-derived parameters that exhibited significant differences. Spearman or Pearson correlation tests were performed to assess the relationships among different DWI-derived biological markers. Subsequently, four machine learning classifier-based models were trained using various DWI-derived parameters as input features. Finally, diagnostic performance was evaluated using ROC analysis with 5-fold cross-validation. Results: With the exception of the pseudo-diffusion coefficient (Dp), IVIM-derived and DKI-derived parameters all demonstrated significant differences between low-grade and high-grade rectal cancer. The logistic regression-based machine learning classifier yielded the most favorable diagnostic efficacy (AUC: 0.902, 95% Confidence Interval: 0.754-1.000; Specificity: 0.856; Sensitivity: 0.925; Youden Index: 0.781). Conclusions: utilizing multiple DWI-derived biological markers in conjunction with a strategy employing multiple machine learning classifiers proves valuable for the noninvasive grading of rectal cancer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.