Abstract
Cigarette smoking/nicotine exposure in pregnancy shows an increased risk of hypertension in offspring, but the mechanisms are unclear. This study tested the hypothesis that m6A RNA hypomethylation epigenetically regulates vascular NOX (NADPH oxidase) and reactive oxygen species production, contributing to the fetal programming of a hypertensive phenotype in nicotine-exposed offspring. Pregnant rats were exposed to episodic chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21, and experiments were performed in 6-month-old adult offspring. Antenatal CINA exposure augmented Ang II (angiotensin II)-stimulated blood pressure response in male, but not female offspring. Moreover, CINA increased vascular NOX2 expression and superoxide production exclusively in male offspring. Inhibition of NOX2 with gp91ds-tat, both ex vivo and in vivo, mitigated the CINA-induced elevation in superoxide production and blood pressure response. Notably, CINA enhanced the expression of vascular m6A demethylase FTO (fat mass and obesity-associated protein), while reducing the total vascular m6A abundance and specific m6A methylation of the NOX2 gene. Additionally, ex vivo inhibition of FTO with FB23-2 attenuated CINA-induced increases in vascular NOX2 expression. In vitro experiments using human umbilical vein endothelial cells demonstrated that nicotine dose-dependently upregulated FTO and NOX2 protein abundance, which were reversed by treatment with the FTO inhibitor FB23-2 or FTO knockdown using siRNAs. This study uncovers a new mechanism: m6A demethylase FTO-mediated epigenetic upregulation of vascular NOX2 signaling in CINA-induced hypertensive phenotype. This insight could lead to a therapeutic target for preventing and treating developmental hypertension programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.