Abstract

The neural mechanisms by which maternal infections increase the risk for schizophrenia are poorly understood; however, animal models using maternal administration of immune activators suggest a role for cytokine imbalance in maternal/fetal compartments. As cytokines can potentially affect multiple aspects of neuronal development and the neuropathology of schizophrenia is believed to involve subtle temporo-limbic neurodevelopmental alterations, we investigated morphological development of the pyramidal neurons of the medial prefrontal cortex (mPFC) and hippocampus in rats that were prenatally challenged with the immune activator lipopolysaccharide (LPS).Pregnant Sprague-Dawley rats were administered with LPS (at E15- E16) or saline. The brains of offspring were processed for Golgi-Cox staining at postnatal days 10, 35 and 60. Dendritic length, branching, spine density and structure were quantified using Neurolucida software. At all ages, dendritic arbor was significantly reduced in mPFC and CA1 neurons of LPS-treated animals. Dendritic length was significantly reduced in the mPFC neurons of LPS group at P10 and 35 but returned to control values at P60. Opposite pattern was observed in CA1 region of LPS animals (normal values at P10 and 35, but a reduction at P60). LPS treatment significantly altered the structure of CA1 dendritic spines at P10. Spine density was found to be significantly lower only in layer V mPFC of P60 LPS rats. The study provides the first evidence that prenatal exposure to an immune activator dynamically affects spatio-temporal development of pyramidal neurons in mPFC and hippocampal that can potentially lead to aberrant neuronal connectivity and functions of these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.