Abstract
The L1 cell adhesion molecule NrCAM (Neuron-glia related cell adhesion molecule) functions as a co-receptor for secreted class 3 Semaphorins to prune subpopulations of dendritic spines on apical dendrites of pyramidal neurons in the developing mouse neocortex. The developing spine cytoskeleton is enriched in actin filaments, but a small number of microtubules have been shown to enter the spine apparently trafficking vesicles to the membrane. Doublecortin-like kinase 1 (DCLK1) is a member of the Doublecortin (DCX) family of microtubule-binding proteins with serine/threonine kinase activity. To determine if DCLK1 plays a role in spine remodeling, we generated a tamoxifen-inducible mouse line (Nex1Cre-ERT2: DCLK1flox/flox: RCE) to delete microtubule binding isoforms of DCLK1 from pyramidal neurons during postnatal stages of spine development. Homozygous DCLK1 conditional mutant mice exhibited decreased spine density on apical dendrites of pyramidal neurons in the prefrontal cortex (layer 2/3). Mature mushroom spines were selectively decreased upon DCLK1 deletion but dendritic arborization was unaltered. Mutagenesis and binding studies revealed that DCLK1 bound NrCAM at the conserved FIGQY1231 motif in the NrCAM cytoplasmic domain, a known interaction site for the actin-spectrin adaptor Ankyrin. These findings demonstrate in a novel mouse model that DCLK1 facilitates spine growth and maturation on cortical pyramidal neurons in the mouse prefrontal cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.