Abstract

BackgroundThe purpose of this study is to evaluate the feasibility using real-time four-dimensional (RT 4D) volume imaging with electronic matrix probe to observe the morphology of atrioventricular valves in normal and abnormal fetuses, measure the area and circumference of atrioventricular valves in normal fetuses and analyze the correlation with gestational age.MethodsRT 4D volume imaging with electronic matrix probe was used to collect cardiac volume data of 162 normal fetuses with the gestational age from 22 to 32 weeks and 19 fetuses with atrioventricular valves abnormalities were also enrolled. All the volume data were analyzed and processed in real-time. The morphology of mitral and tricuspid valves was observed in surface mode. The area and circumference of valves were measured in a 4D render view at the end of diastole and analyzed the correlation with gestational age.ResultsIn 148 of 162 fetuses (91%), the 4D rendered image could be successfully obtained, which clearly showed the morphology of the atrioventricular valves. The area and circumference of mitral and tricuspid valves were positively correlated with gestational age (P < 0.01). Furthermore, 4D rendered images were successfully obtained in 17 of 19 fetuses (89%) with atrioventricular valves abnormalities. ConclusionsThe reference range of the area and circumference of atrioventricular valves in normal fetuses at different gestational weeks could be determined by using the RT 4D volume imaging with electronic matrix probe, which can provide certain diagnostic information for the clinic. The RT 4D images could display the valves morphology vividly in both normal and abnormal fetuses, including some subtle lesions which are not identified by traditional two-dimensional (2D) echocardiography. It is feasible to use the RT 4D volume imaging with electronic matrix probe to perform the prenatal evaluation in the fetal atrioventricular valves.

Highlights

  • The purpose of this study is to evaluate the feasibility using real-time four-dimensional (RT 4D) volume imaging with electronic matrix probe to observe the morphology of atrioventricular valves in normal and abnormal fetuses, measure the area and circumference of atrioventricular valves in normal fetuses and analyze the correlation with gestational age

  • The spatial temporal correlation imaging (STIC) technology has added some advantages for fetal cardiac examination: visualizing structures which are not identified by 2D echocardiography; ability to get depth perception in rendered images; obtained the standard 2D planes from 4D volumes; improved patient counseling; and offline analysis of datasets for expert review and telemedicine [6, 10]

  • We used the electronic matrix probe RT 4D volume imaging to dynamically observe the morphology of the normal fetal atrioventricular valves and measure the area and circumference of the normal fetal atrioventricular valves to evaluate its correlation with the gestational weeks

Read more

Summary

Introduction

The purpose of this study is to evaluate the feasibility using real-time four-dimensional (RT 4D) volume imaging with electronic matrix probe to observe the morphology of atrioventricular valves in normal and abnormal fetuses, measure the area and circumference of atrioventricular valves in normal fetuses and analyze the correlation with gestational age. The STIC technology has added some advantages for fetal cardiac examination: visualizing structures which are not identified by 2D echocardiography; ability to get depth perception in rendered images; obtained the standard 2D planes from 4D volumes; improved patient counseling; and offline analysis of datasets for expert review and telemedicine [6, 10]. We used the electronic matrix probe RT 4D volume imaging to dynamically observe the morphology of the normal fetal atrioventricular valves and measure the area and circumference of the normal fetal atrioventricular valves to evaluate its correlation with the gestational weeks. Some abnormal atrioventricular valves were visualized by RT 4D mode

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.