Abstract

To assess the value of non-invasive prenatal testing (NIPT) for detecting fetal chromosomal microdeletion/microduplication syndromes by carrying out prenatal diagnoses for two fetuses with Xp22.31 microdeletion indicated by NIPT. Two pregnant women suspected for fetal Xp22.31 microdeletion syndrome who presented at Zaozhuang Maternal and Child Health Care Hospital on December 5, 2017 and October 15, 2020 were selected as the study subjects. Clinical data of the two women were collected, and peripheral venous blood samples were collected for NIPT testing. Amniotic fluid samples were taken for G-banding chromosomal karyotyping analysis and copy number variation sequencing (CNV-seq) for fetus 1, while G-banding chromosomal karyotyping and single nucleotide polymorphism microarray analysis (SNP array) were carried out for fetus 2. Peripheral venous blood samples of couple 1 were collected for CNV-seq to verify the origin of copy number variation . NIPT indicated that fetus 1 had harbored a 1.3 Mb deletion in the Xp22.31 region, while G-banding chromosomal karyotyping had found no abnormality. CNV-seq analysis verified the fetus to be seg[GRCh37]del(X)(p22.31)chrX:g.6800001_7940000del, with a 1.14 Mb deletion at Xp22.31, which was derived from its mother. NIPT indicated that fetus 2 had harbored a 1.54 Mb deletion in the Xp22.31 region, while G-banding chromosomal karyotyping had found no abnormality. SNP array analysis indicated arr[GRCh37]Xp22.31(6458940_8003247)×0, with a 1.54 Mb deletion in Xp22.31 region. NIPT not only has a good performance for detecting fetal trisomies 21, 18 and 13, but also has the potential for detecting chromosomal microdeletion/microduplications. For high risk fetuses indicated by NIPT, prenatal diagnosis needs to be carry out to verify the chromosomal abnormalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call