Abstract

We calculate room temperature thermal fluctuational base pair opening probability of a daunomycin-poly d(GCAT).poly d(ATGC) complex. This system is constructed at an atomic level of detail based on x-ray analysis of a crystal structure. The base pair opening probabilities are calculated from a modified self-consistent phonon approach of anharmonic lattice dynamics theory. We find that daunomycin binding substantially enhances the thermal stability of one of the base pairs adjacent the drug because of strong hydrogen bonding between the drug and the base. The possible effect of this enhanced stability on the drug inhibition of DNA transcription and replication is discussed. We also calculate the probability of drug dissociation from the helix based on the selfconsistent calculation of the probability of the disruption of drug-base H-bonds and the unstacking probability of the drug. The calculations can be used to determine the equilibrium drug binding constant which is found to be in good agreement with observations on similar daunomycin-DNA systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.