Abstract

Experimental efficiencies of up to 35.5 percent have been reported for Read-type GaAs diodes, whereas theoretical calculations have predicted an upper limit of approximately 30 percent for the conversion efficiency of IMPATT diodes. The concept of a premature collection mode is shown to resolve this discrepancy by predicting maximum efficiencies close to 40 percent. Premature collection refers to large-signal conditions where the modulation of the drift width is sufficiently large to result in collection of the avalanche current pulse at drift angles smaller than the small-signal angle. It is shown that a discontinuous transition between the IMPATT and the premature collection modes takes place when the drift angle in the small-signal limit is greater than π. Designing the diode for close to punchthrough conditions in small-signal operation extends the practical frequency range for inducing premature collection by avoiding long drift angles and corresponding rapid conductance saturation in the IMPATT mode. The onset of premature collection is accompanied by a substantial increase in power output because of a more favorable drift angle, and in high noise because of the high RF levels involved. The jump in transit angle causes a discontinuous increase in negative conductance. The hysteresis in the tuning characteristic resulting from this discontinuity has been observed experimentally. Noise measures in the range 60-70 dB have been measured and calculated for the premature collection mode compared to 40-50 dB under large-signal conditions for the IMPATT mode. Therefore, the high efficiencies available with the premature collection mode are expected to be usable only in applications where high noise levels can be tolerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.