Abstract
During the initial cycling of lithium-ion batteries, the generation of SEI at the electrode-electrolyte interface and the occurrence of irreversible side reactions consume the active lithium, resulting in irreversible loss of volume (ICL), which may also be accompanied by electrode volume changes and structural collapse. Addressing these challenges has become critical, and pre-lithiation with additional lithium has emerged as a key way to improve battery performance. Hence, this review comprehensively analyzes and summarizes the causes of ICL in lithium-ion batteries, and systematically discusses various prelithiation methods and mechanisms of different electrode structures, especially electrodes. Moreover, we discuss the importance of developing effective electrolyte, separator, and binder pre-lithiation technologies to improve ionic conductivity and battery life. The effectiveness of each strategy in improving initial capacity and cycling stability, while addressing compatibility issues and minimizing potential side effects, is evaluated to inform the future development and large-scale application of pre-lithiation technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have