Abstract

Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic properties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call