Abstract

External ventricular drainage (EVD) catheter placement is one of the most commonly performed neurosurgical procedures. The study's objective was to compare a computed tomography (CT) bolt scan-guided approach for the placement of EVDs with conventional landmark-based insertion. In this retrospective case-control study, we analyzed patients undergoing bolt-kit EVD catheter placement, either CT-guided or landmark-based, between 2013 and 2016. The CT bolt scan-guided approach was based on a dose-reduced CT scan after bolt fixation with immediate image reconstruction along the axis of the bolt to evaluate the putative insertion axis. If needed, angulation of the bolt was corrected and the procedure repeated before the catheter was inserted. Primary endpoint was the accuracy of insertion. Secondary endpoints were the overall number of attempts, duration of intervention, complication rates, and cumulative radiation dose. In total, 34 patients were included in the final analysis. In the group undergoing CT-guided placement, the average ventricle width was significantly smaller (P=0.04) and average midline shift significantly more pronounced (P= 0.01). CT-guided placement resulted in correct positioning of the catheter in the ipsilateral frontal horn in all 100% of the cases compared with landmark-guided insertion (63%; P= 0.01). Application of the CT-guided approach increased the number of total CT scans (3.6 ± 1.9) and the overall radiation dose (3.34 ± 1.61 mSv) compared with the freehand insertion group (1.84 ± 2.0 mSv and 1.55 ± 1.66 mSv). No differences were found for the other secondary outcome parameters. CT-guided bolt-kit EVD catheter placement is feasible and accurate in the most difficult cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call