Abstract

The traditional method in determining first arrival time of earthquake dataset is time consuming process due to waveform manual inspection. Additional waveform attributes can help determine events detection. One of the widely used attribute is The Short Term Averaging/Long Term Averaging (STA/LTA) which is simply division moving average of waveform amplitude between short time and longer time. Alternatively, waveform attribute can also be built using kurtosis and skewness. The kurtosis attribute is defined as sharpness of data distribution. By definition, the maximum signal should be at or close to the P wave arrival. The skewness is typically used to show normal distribution of the data. The uniqueness of this method is that it has an ability to determine whether the first P wave arrival has positive of negative number. The skewness calculation is similar to kurtosis but it uses the power of 3 instead of 4. With the objective of generating efficient scheme to pick first time arrival, we explore use artificial neural network and a combination of kurtosis and skewness attributes. We use a collection of magnitude events with moment magnitude larger than 3 located close to Moluccas island, Indonesia. We collected all events information from the Indonesian Agency of Meteorology, Climatology and Geophysics. The process is started with manually pick all P wave arrivals using manual inspection. Next, we trained the artificial neural network with attributes numbers as inputs and arrival time we manually picked as the output. In total we used 100 regional events that has clear P wave phases. Then, we validated the results until reaching 0.99 accuracy. In the last step, we tested the once trained procedures on new waveforms contained events. Current result shows an average of 0.4s different between manual pick and trained picked from machine learning. The accuracy can be improved by applying a band pass 0.1-2 Hz filtering with an average of 0.2s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.