Abstract

Radiocarbon is produced within minerals at the earth's surface (in situ production) by a number of spallation reactions. Its relatively short half-life of 5730 yr provides us with a unique cosmogenic nuclide tool for the measurement of rapid erosion rates (>10−3 cm yr−1) and events occurring over the past 25 kyr. At SUERC, we have designed and built a vacuum system to extract 14C from quartz which is based on a system developed at the University of Arizona. This system uses resistance heating of samples to a temperature of approximately 1100° in the presence of lithium metaborate (LiBO2) to dissolve the quartz and liberate any carbon present. During extraction, the carbon is oxidized to CO2 in an O2 atmosphere so that it may be collected cryogenically. The CO2 is subsequently purified and converted to graphite for accelerator mass spectrometry (AMS) measurement. One of the biggest problems in measuring in situ 14C is establishing a low and reproducible system blank and efficient extraction of the in situ 14C component. Here, we present initial data for 14C-free CO2, derived from geological carbonate and added to the vacuum system to determine the system blank. Shielded quartz samples (which should be 14C free) and a surface quartz sample routinely analyzed at the University of Arizona were also analyzed at SUERC, and the data compared with values derived from the University of Arizona system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.