Abstract
Traffic stress causes turfgrass injury and soil compaction but the underlying physiological mechanisms are not well documented. The objectives of this study were to investigate the physiological responses of kentucky bluegrass (Poa pratensis), tall fescue (Festuca arundinacea), and japanese zoysiagrass (Zoysia japonica) to three levels of traffic stress during the growing season under simulated soccer traffic conditions. Relative leaf water content (LWC), shoot density, leaf chlorophyll concentration (LCC), membrane permeability, and leaf antioxidant peroxidase (POD) activity were measured once per month. The traffic stress treatments caused a reduction in LWC, shoot density, LCC, and POD activity, and an increase in cell membrane permeability in all three species. Japanese zoysiagrass had less electrolyte leakage, and higher POD activity and shoot density than both kentucky bluegrass and tall fescue. The results suggest that turfgrass tolerance to traffic stress may be related to leaf antioxidant activity. Turfgrass species or cultivars with higher leaf antioxidant activity may be more tolerant to traffic stress than those with lower antioxidant activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.