Abstract

Development of an in situ passive sampler for mercury (Hg), and its toxic form, methylmercury (MeHg), using simple polymer films, was explored for the potential to make an efficient and environmentally relevant monitoring tool for this widespread aquatic pollutant. The sulfur-containing polymers polysulfone (PS), and polyphenylene sulfide (PPS), were found to accumulate both MeHg and inorganic Hg (iHg), whereas polyethylene (PE) sorbed iHg but not MeHg, and polyoxymethylene (POM) and polyethersulfone (PES) films had low affinity for both Hg species. Uptake rates of Hg species into polymers were linear over two weeks, and dissolved organic matter at natural levels had no effect on partitioning of MeHg or iHg to the polymers. Sorption of MeHg to PS and PPS from three estuarine sediments correlated with uptake into diffusive gel-type samplers over time, and in PPS, with accumulation by the estuarine amphipod, Leptocheirus plumulosus. These polymers had lower MeHg adsorption rates, but are simpler to assemble, than diffusive gel-type samplers. Higher contaminant concentrations in polymer and gel-type samplers corresponded with porewater concentrations across sediments, suggesting they sample the dissolved MeHg pool, whereas MeHg levels in amphipods were more elevated with higher bulk sediment MeHg, which may reflect feeding strategy. While polymers with higher affinity for MeHg and iHg are needed for some environmental applications, this work suggests a simple sampling approach has potential for time-integrated, environmentally-meaningful MeHg monitoring in contaminated sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.