Abstract

This article describes preliminary in vivo studies evaluating the osteogeneic potential of bone morphogenetic proteins (BMPs) delivered from an absorbable puttylike polymer matrix. In the first study, bovine-derived bone morphogenetic proteins were incorporated in an polymer matrix consisting of 50:50 poly(DL-lactide-co-glycolide) dissolved in N-methyl-2-pyrrolidone. The matrix was implanted in an 8 mm critical-size calvarial defect created in the skull of adult Sprague-Dawley rats (n = 5 per treatment group). After 28 days, the implant sites were removed and examined for new bone formation, polymer degradation, and tissue reaction. Gamma-irradiated polymer matrices appeared to give more bone formation than nonirradiated samples (histological analysis; 2. 76 + 1.34 mm(2) of bone versus 1.30 + 0.90 mm(2) of bone, respectively and x-ray analysis; 27.2 + 15.9 mm(2) of bone versus 20. 7 + 16.7 mm(2) of bone, respectively) and less residual polymer (0.0 + 0.0 versus 0.2 + 0.4, respectively). The polymer implants with bone morphogenetic protein also gave less inflammatory response than the polymer controls (gamma irradiated polymer/BMP = 1.8 + 0.4 and nonirradiated polymer/BMP = 1.2 + 0.4 versus polymer only = 3.0 + 1. 2, respectively). However, despite trends in both the x-ray and histological data there was no statistical difference in the amount of new bone formed among the four treatment groups (P > 0.05). This was most likely due to the large variance in the data scatter and the small number of animals per group. In the second animal study, bovine-derived BMPs and the polymeric carrier were gamma irradiated separately, at doses of 1.5 or 2.5 Mrad, and their ability to form bone in a rat skull onlay model was evaluated using Sprague-Dawley rats (n = 5 per treatment group). Histomorphometry of skull caps harvested 28 days after implantation showed no significant differences as compared to non-irradiated samples, in implant area, new bone area, and percent new bone (P > 0.05). These results suggest gamma irradiation may be useful in sterilization of the bovine-derived BMPs and the polymeric carrier for potential bone repair and/or regeneration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.