Abstract

Utilizing recycled crushed clay brick (RCB) from C&D waste in road engineering construction as the substitute for natural aggregates has attracted a lot of attention, which would be a promising step forward towards sustainable development and green construction. The objective of this study is to assess the feasibility of cement-stabilized macadam (CSM), incorporating various RCB fine aggregate substitution ratios. For this purpose, the physical and chemical properties of RCB fine aggregate was tested, and RCB exhibited a porous surface micro-morphology, high water absorption and pozzolanic activity. Subsequently, a comprehensive experimental investigation of modified CSM with RCB has been carried out based on laboratory tests concerning the mechanical and shrinkage properties. Results showed that higher RCB fine aggregate substitution ratio resulted in lower unconfined compressive strength, and the negative influence of RCB on unconfined compressive strength would decrease gradually, varying curing time; however, the higher the RCB substitution ratio was, the larger the indirect tensile strength at 90 d curing time of the late curing period was. CSM containing RCB had an overall increasing accumulative water loss rate, accumulative strain of dry shrinkage and average coefficient of dry shrinkage, except that 20% RCB resulted in an excellent dry shrinkage property. Moreover, RCB with pozzolanic activity reacted very slowly mainly at later ages, enhancing the interfacial transition zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.