Abstract

We describe the preliminary evaluation of the frequency corrections and their uncertainty in the cesium fountain primary frequency standard (PFS) NMIJ-F2 under development at National Metrology Institute of Japan (NMIJ). In NMIJ-F2, cold atoms generated from a vapor-loaded optical molasses in the (001) configuration are optically pumped to the Zeeman sublevels of m <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</sub> = 0 to increase the number of atoms involved in the Ramsey interrogation. Moreover, a cryocooled sapphire oscillator with ultralow phase noise is employed as the local oscillator to avoid degradation of the frequency stability due to the Dick effect. As a result, we have obtained a very high fractional frequency stability of 9.7 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-14</sup> τ <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1/2</sup> . As for systematic frequency shifts, the fractional correction for the second-order Zeeman shift is experimentally estimated to be (-165.5 ± 0.5) × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-15</sup> from the first-order Zeeman shift of atoms in m <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</sub> = +1 launched to various heights. The fractional frequency correction for cold-atom collisions is estimated to be (+3.3 ± 0.4) × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-15</sup> by extrapolating the frequency to zero density from the frequencies measured for various nonzero atom numbers. We will soon be able to make a comparison with other atomic fountain PFSs at the 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-15</sup> level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.