Abstract

AbstractThe Visible Infrared Imaging Radiometer Suite (VIIRS) is the next‐generation polar‐orbiting operational environmental sensor with a capability for global aerosol observations. The VIIRS aerosol Environmental Data Record (EDR) is expected to continue the decade‐long successful multispectral aerosol retrieval from the NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) for scientific research and applications. Since the launch of the Suomi National Polar‐orbiting Partnership (S‐NPP), the VIIRS aerosol calibration/validation team has been continuously monitoring, evaluating, and improving the performance of VIIRS aerosol retrievals. In this study, the VIIRS aerosol optical thickness (AOT) at 550 nm EDR at current Provisional maturity level is evaluated by comparing it with MODIS retrievals and measurements from the Aerosol Robotic Network (AERONET) and the Maritime Aerosol Network (MAN). The VIIRS global mean AOT at 550 nm differs from that of MODIS by approximately −0.01 over ocean and 0.03 over land (0.00 and −0.01 for the collocated retrievals) but shows larger regional biases. Global validation with AERONET and with MAN measurements shows biases of 0.01 over ocean and −0.01 over land, with about 64% and 71% of retrievals falling within the expected uncertainty range established by MODIS over ocean (±(0.03 + 0.05AOT)) and over land (±(0.05 + 0.15AOT)), respectively. The VIIRS retrievals over land exhibit slight overestimation over vegetated surfaces and underestimation over soil‐dominated surfaces. These results show that the VIIRS AOT at 550 nm product provides a solid global data set for quantitative scientific investigations and environmental monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.