Abstract

The Gravity Recovery and Climate Experiment (GRACE) mission has provided global observations of temporal variations in the gravity field resulting from mass redistribution at the surface and within the Earth for the period 2002–2017. Although GRACE satellites are not able to realistically detect the second zonal parameter (ΔC20) of geopotential associated with the flattening of the Earth, they can accurately determine variations in degree-2 order-1 (ΔC21, ΔS21) coefficients that are proportional to variations in polar motion. Therefore, GRACE measurements are commonly exploited to interpret polar motion changes due to variations in the global mass redistribution, especially in the continental hydrosphere and cryosphere. Such impacts are usually examined by computing the so-called hydrological polar motion excitation (HAM) and cryospheric polar motion excitation (CAM), often analyzed together as HAM/CAM. The great success of the GRACE mission and the scientific robustness of its data contributed to the launch of its successor, GRACE Follow-On (GRACE-FO), which began in May 2018 and continues to the present. This study presents the first estimates of HAM/CAM computed from GRACE-FO data provided by three data centers: Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum (GFZ). In this paper, the data series is computed using different types of GRACE/GRACE-FO data: ΔC21, ΔS21 coefficients of geopotential, gridded terrestrial water storage anomalies, and mascon solutions. We compare and evaluate different methods of HAM/CAM estimation and examine the compatibility between CSR, JPL, and GFZ data. We also validate different HAM/CAM estimations using precise geodetic measurements and geophysical models. Analysis of data from the first 19 months of GRACE-FO shows that the consistency between GRACE-FO-based HAM/CAM and observed hydrological/cryospheric signals in polar motion is similar to the consistency obtained for the initial period of the GRACE mission, worse than the consistency received for the best GRACE period, and higher than the consistency obtained for the terminal phase of the GRACE mission. In general, the current quality of HAM/CAM from GRACE Follow-On meets expectations. In the following months, after full calibration of the instruments, this accuracy is expected to increase.

Highlights

  • In the first part of this study, we focus on analysis of internal agreement between hydrological polar motion excitation (HAM)/cryospheric polar motion excitation (CAM) obtained from different Gravity Recovery and Climate Experiment (GRACE) and GRACE-FO solutions

  • The paper showed a comparison between HAM/CAM computed from different GRACE/GRACE-FO data types, namely Level-2 data (∆C21, ∆S21 coefficients of geopotential) and Level-3 data (TWS anomalies obtained from spherical harmonics and terrestrial water storage (TWS) anomalies taken from MAS data)

  • The conducted research demonstrated that the highest internal consistency between different GRACE and GRACE-FO HAM/CAM series can be obtained for data from Jet Propulsion Laboratory (JPL) and Center for Space Research (CSR)

Read more

Summary

Introduction

The Earth’s gravity field is changing in time and space because of mass displacements in the surficial fluid layers: the atmosphere, the ocean, the land hydrosphere. Such mass variability induces variations in Earth orientation parameters (EOPs): precession and nutation, polar motion (PM), and length-of-day (LOD) variations [1]. PM variations result from many geophysical processes, which are characterized by different frequencies, from a few days to decades [2] Among these factors we can distinguish mass redistribution of atmosphere, oceans, continental water, snow and ice, the gravitational attraction of the Sun, Moon, and planets, interactions between core and mantle [3], or even climate changes [4,5]. Such impacts have been proven to be the main contributors to variation in the Earth’s rotation for time scales of a few years or less, especially for seasonal time scales [13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call