Abstract
In this study, aspects of the propulsion design for a highly swept wing configuration with military application are presented. These include the design of the thermodynamic cycle and the automated optimization of the inlet geometry. First, the thermodynamic design process of a conventional turbofan engine is described, which is intended to meet the requirements of a generic UCAV configuration. In addition to the thrust requirements derived from the mission profile, other constraints such as maximum fuel consumption, available installation space and aerodynamic and structural limits dimension the model in preliminary design. The resulting engine data are used as boundary conditions for the CFD simulation of the associated engine intake. This CFD calculation is part of an optimization process chain for determining the inlet duct geometry with low total pressure loss and low engine visibility. In order to estimate the effects of the different total pressure losses on the mission fuel consumption, the results obtained using CFD calculations are fed back into the performance simulation. This allows quantifying the influence of the inlet geometry on the global engine parameter. Based on the investigations and obtained results, the final configurations for the engine and intake are selected.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have