Abstract
Crystals have been grown of 2-keto-3-deoxygluconate aldolase (KDG aldolase) from the hyperthermophilic archaeon Sulfolobus solfataricus that diffract to 2.2 A resolution. The enzyme catalyses the reversible aldol cleavage of 2-keto-3-dexoygluconate to pyruvate and glyceraldehyde, the third step of a modified non-phosphorylated Entner-Doudoroff pathway of glucose oxidation. S. solfataricus grows optimally at 353 K and the enzyme itself has a half-life of 2.5 h at 373 K. Knowledge of the crystal structure of KDG aldolase will further understanding of the basis of protein hyperthermostability and create a target for site-directed mutagenesis of active-site residues, with the aim of altering substrate specificity. Three crystal forms have been obtained: orthorhombic crystals of space group P2(1)2(1)2(1), which diffract to beyond 2.15 A, monoclinic crystals of space group C2, which diffract to 2.2 A, and cubic crystals of space group P4(2)32, which diffract to 3.4 A.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section D, Biological crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.