Abstract

This paper presents a few nuclear thermal rocket (NTR) reactor core preliminary conceptual designs based on the use of monolithic uranium nitride (UN) fuel plates or pins clad with tungsten (W), alloyed or unalloyed as needed. High-assay low-enriched uranium (HALEU) as well as high-enriched uranium (HEU) are considered. Nominal core thermal powers are between 300 and 1100 MW corresponding to thrusts between 66 kN and 240 kN. The estimated thrust-to-reactor-weight ratios (T/WRx) achievable with the HEU plate and pin configurations are between 3.8 and 10.9. The T/WRx achievable with the HALEU plate and pin configurations are lower, 1.9–4.0, than those achievable with HEU. It is noteworthy that even a relatively modest increase in fuel enrichment above the HALEU limit enables a significant increase in T/WRx. It must be emphasized that these results do not yet account for uncertainties and that the appropriateness of the assumed fuel thermal design limits for normal operation (i.e., peak centerline temperature of 3100 K) will need to be confirmed. Finally, just like for the other UN-based fuels currently considered for NTR applications (i.e., CERMET and CERCER), the proposed UN fuel systems need significant testing in prototypic conditions to confirm the appropriate performance for safe NTR applications. However, the monolithic fuel systems may have, overall, a higher technology readiness level (TRL), and, consequently, shorter fuel development and validation time may result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call