Abstract

BackgroundMany species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL).ResultsWe hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent.ConclusionWe have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning.

Highlights

  • Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals

  • Enrichment of yolk syncytial layer (YSL), enveloping layer (EVL) and maternal genes by comparative microarray We hypothesize that the zebrafish external yolk syncytial layer (E-YSL) is a likely source of key signals for inducing ventrolateral mesendoderm

  • This hypothesis is based on experimental embryology studies and on the E-YSL's proximity to prospective ventrolateral mesendoderm [9,16,17,20,21]

Read more

Summary

Introduction

Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. Extraembryonic tissues have transient functions to protect, nourish and pattern embryos during embryogenesis, but their cellular descendants are not incorporated into the adult body. Examples of human extraembryonic tissues are the placenta and its trophoblast cell progenitors, Zebrafish EVL cells first form at two hours post fertilization (hpf ) [6]. This and the formation of primordial germ cells are the earliest differentiation steps in zebrafish embryogenesis [7]. EVL cells form a superficial epithelium that surrounds and protects embryonic cells, and the EVL is anchored to the YSL [2,8].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call