Abstract

IntroductionResting-state functional connectivity magnetic resonance imaging (rsfcMRI) of rapid eye movement (REM) sleep behavior disorder (RBD) may provide an early biomarker of α-synucleinopathy. However, few rsfcMRI studies have examined cognitive networks. To elucidate brain network changes in RBD, we performed rsfcMRI in patients with polysomnography-confirmed RBD and healthy controls (HCs), with a sufficiently large sample size in each group. MethodsWe analyzed rsfcMRI data from 50 RBD patients and 70 age-matched HCs. Although RBD patients showed no motor signs, some exhibited autonomic and cognitive problems. Several resting-state functional networks were extracted by group independent component analysis from HCs, including the executive-control (ECN), default-mode (DMN), basal ganglia (BGN), and sensory-motor (SMN) networks. Functional connectivity (FC) was compared between groups using dual regression analysis. In the RBD group, correlation analysis was performed between FC and clinical/cognitive scales. ResultsPatients with RBD showed reduced striatal-prefrontal FC in ECN, consistent with executive dysfunctions. No abnormalities were found in DMN. In the motor networks, we identified reduced midbrain-pallidum FC in BGN and reduced motor and somatosensory cortex FC in SMN. ConclusionWe found abnormal ECN and normal DMN as a possible hallmark of cognitive dysfunctions in early α-synucleinopathies. We replicated abnormalities in BGN and SMN corresponding to subclinical movement disorder of RBD. RsfcMRI may provide an early biomarker of both cognitive and motor network dysfunctions of α-synucleinopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call