Abstract

We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As a particular example, we consider a semimetal, with a pair of three-band crossing points at which a flat band intersects with a Dirac cone, and focus on the s-wave intervalley pairing channel. The nearly dispersionless nature of the flat band at strong attraction between electrons promotes local Cooper pair formation so that the system may be modeled as an array of superconducting grains. Due to dispersive bands, Andreev scattering between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop a mean-field theory to calculate transition temperature between the preformed Cooper pair state and the phase-coherent state for different interaction strengths in the Cooper channel. The transition temperature between semimetal and preformed Cooper pair phases is proportional to the interaction constant, the dependence of the transition temperature to the phase-coherent state on the interaction constant is weaker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call