Abstract

Mutations in the p53 tumor suppressor gene have been found in most human tumors. Analyses of the spectrum of p53 mutations in certain tumor types have shown a bias for mutations originating from lesions presumed to be in the untranscribed strand of the gene. This implies strand specificity for the formation or repair of DNA damage. We measured the induction and repair of ultraviolet light-induced cyclobutane pyrimidine dimers (CPD) in each strand of the human p53 gene in a normal human lung fibroblast cell line using quantitative Southern hybridization. We found that the removal of CPD from the transcribed strand was more rapid than that from the untranscribed strand of this gene, although the frequency of CPD induction was similar in both strands. Preferential repair of the transcribed strand of the p53 gene may account for the mutational spectra of this gene in human tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.