Abstract

Preferential nucleation of dynamic grains at triple junction (TJ) was investigated in copper tricrystal during high-temperature deformation. The nucleation of the dynamic grains at the TJ was observed at much lower strain than the peak strain where dynamic recrystallization (DRX) extensively took place. Further straining caused the incremental nucleation of dynamic grains on sliding grain boundaries accompanied by grain-boundary migration and serration. This occurred also at relatively lower strain than the peak strain. The DRX grains evolved to the most area of the tricrystal when deformed to about the peak strain. The observed preferential nucleation of DRX grains at the TJ was considered with relation of stress and deformation concentration there induced by folding and grain-boundary sliding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call