Abstract
Fluorescence detection coupled to capillary electrophoresis (CE-FL) effectively separates molecules in solution and at the same time allows monitoring of the fluorescence spectrum of each individual species. The integration of separation and fluorescence detection results in a powerful method superior to the ensemble in-cuvette fluorescence measurement, in probing the binding interaction between ligands and quantum dots (QDs) in complex solutions. Förster resonance energy transfer (FRET) between fluorescent ligands and QDs could be readily detected by CE-FL, which together with the migration times of the fluorescent peaks provides an indication of the binding interaction between ligands and QDs. In the present study, the binding interaction between a multivalent ligand, polyhistidine peptide denderimer (PHPD), and CdSe-ZnS QDs was probed by CE-FL using the monovalent hexahistidine peptide as a control. Cy5 labeled PHPD assembles on glutathione capped QDs, showing a higher FRET signal than that of the assembly between Cy5 labeled hexahistidine peptide and QDs. Capillary electrophoresis further revealed that PHPD outcompetes other QD binding small molecules, peptides, and proteins in cell lysate. Our study demonstrates the power of CE-FL in analyzing the binding interaction between ligands and QDs in a complex binding solution. It also shows that clustering surface binding motifs yields multivalent ligands that can preferentially assemble with nanoparticles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have