Abstract
A recommender system (RS) supports online users in e-commerce by proposing products that are assumed to be both useful and interesting. Knowledge-based recommendation systems form one branch of these online sales support systems that is particularly relevant for high-involvement product domains like consumer electronics, financial services or tourism. A constraint-based RS is a specific variant of a knowledge-based RS that builds on a CSP formalism for problem representation and solving. This article formalizes the different variants of a constraint-based recommendation problem based on consistency and the empirical part compares the performance of different constraint-based recommendation mechanisms in offline experiments on historical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.