Abstract

The main challenges for recommender systems are: producing high quality recommendations and performing many real-time recommendations per second for millions of customers and products. This paper addresses both challenges in the context of constraint-based recommenders where users specify their requirements and the system recommends a solution. We propose a novel approach to determine value ordering heuristics on the basis of matrix factorization. As far as we are aware, no researches exist in constraint-based recommendation domain which exploit matrix factorization techniques. The main idea of our approach consists in the prediction of value ordering heuristics based on historical transactions which can either represent past customer purchases or requirements. Thereby, value ordering heuristics are computed which are specific to each user's requirements. A series of experiments on real-world datasets for calculating constraint-based recommendations has shown that our approach outperforms compared methods in terms of runtime efficiency and prediction quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.