Abstract

We investigated the mechanisms underlying faster force recovery from eccentric contractions (ECCs) in female than in male mice, focusing on mitochondrial responses. At 3 days after repeated ECCs (REC3), female mice showed faster recovery from ECC-induced force depression than male mice. At REC3, the mitochondria in females displayed superior responses to those in males: (i) mitochondrial Ca2+ uniporter content of muscles at REC3 was higher than that of rested muscles in females, and (ii) mitochondrial volume density in females was higher than that in males at REC3. Ovariectomized (OVX) female mice showed lower mitochondrial responses at REC3, similar to those observed in male mice, but oestrogen replacement nullified such lower responses in OVX. We concluded that: (i) superior mitochondrial responses after ECCs, at least in part, cause faster force recovery from ECCs in females than in males, and (ii) oestrogen contributes to such superior responses in the mitochondria in females. The purpose of this study was to investigate the mechanisms underlying sex differences in force recovery after eccentric contractions (ECCs). The left limbs of female and male mice were exposed to repeated ECCs (five sets of 50 contractions) elicited in vivo in the plantar flexor muscles. Isometric torques were measured before, immediately and at 3 days after ECCs (REC3), and gastrocnemius muscles obtained at REC3 were used for biochemical and morphological analyses. At REC3, a greater torque depression at 40Hz was observed in males than females. Additionally, the following differences were observed at REC3: (i) in males but not females, triad structure was distorted, (ii) mitochondrial Ca2+ uniporter (MCU) content was increased in females but not in males, and (iii) mitochondrial volume density at REC3 was lower in males than in females. To examine the contribution of oestrogen to torque recovery, female mice were assigned to sham-operated (Sham), ovariectomized (OVX) and OVX treated with 17β-oestradiol (OVX + E2) groups. At REC3, (i) greater torque depression at 40Hz was observed in the OVX group than in the Sham and OVX + E2 groups, (ii) MCU content was increased in the Sham and OVX + E2 groups but not the OVX group, and (iii) mitochondrial volume density at REC3 was lower in the OVX group than the Sham and OVX + E2 groups. These results suggest that faster force recovery in females than in males is, at least partly, ascribable to superior mitochondrial responses, and oestrogen supplementation, in part, enhances such responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call