Abstract

We have quantified the natural mating system in eight populations of the simultaneously hermaphroditic aquatic snail Lymnaea stagnalis, and studied the ecological and genetic forces that may be directing mating system evolution in this species. We investigated whether the natural mating system can be explained by the availability of mates, by the differential survival of self- and cross-fertilized snails in nature, and by the effects of mating system on parental fecundity and early survival. The natural mating system of L. stagnalis was found to be predominantly cross-fertilizing. Density of snails in the populations had no relationship with the mating system, suggesting that outcrossing rates are not limited by mate availability at the population densities observed. Contrary to expectations for outcrossing species, we detected no evidence for inbreeding depression in survival in nature with inferential population genetic methods. Further, experimental manipulations of mating system in the laboratory revealed that self-fertilization had no effect on parental fecundity, and only minor effects on offspring survival. Predominance of cross-fertilization despite low apparent fitness costs of self-fertilization is at odds with the paradigm that high self-fertilization depression is necessary for maintenance of cross-fertilization in self-compatible hermaphrodites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.