Abstract

Manufacturing industries facing problem in optimal selection of process parameters in machining process. Finding optimum process parameters for achieving maximum Material Removal Rate and minimum Surface Roughness is a challenging task and it requires lot of time and energy for experimentation trails or experience. It wastes lot of resources and money, sometimes ends up with negative results. To overcome the above issue, this paper presents an algorithm for prediction of Surface Roughness and Material Removal rate using Decision Tree Algorithm and Naive Bayes Algorithm without experimentation. Lot of resources and time can be saved using these machine learning algorithms. In this paper, Material removal rate and Surface roughness of EDM machining of Aluminum composites is predicted using Decision tree algorithm and Naive Bayes algorithm. Then the model can be used to predict the Material Removal Rate and Surface finish of any combination process parameters before machining process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.