Abstract
Car-sharing systems are an attractive alternative to private vehicles due to their benefits in terms of mobility and sustainability. However, the distribution of vehicles throughout the network in one-way systems is disturbed due to asymmetry and stochasticity in demand. As a consequence, vehicles need to be relocated to maintain an adequate service level.In this paper, we develop a user-based vehicle relocation approach through the incentivization of customers and a predictive model for the state of the system based on Markov chains. Our methods determine the optimal incentive as a trade-off between the cost of an incentive and the expected omitted demand loss while taking into account the value of time of customers. We introduce a learning algorithm that allows the operator to estimate unknown customer preferences to find the optimal incentive.Experimental results in an event-based simulation of a real system show that the use of incentives can significantly increase the service level and profitability of a car-sharing system and decrease the number of staff members needed to balance the vehicles in the system. Thereby, incentives are a more sustainable alternative to staff-based relocations. Extensive sensitivity analyses show the prospective benefits in terms of customer flexibility and the robustness of our results to varying customer preferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.