Abstract

This paper presents a generalized simulation based approach for generation and characterization of turned surfaces based on process parameters and manufacturing errors. The presented model shows that with proper analytical modeling along with appropriate process monitoring system (force signals, vibration signals, spindle motion error signals etc.,) a comprehensive surface generation model can be developed. First, the tool nose geometry and cutting-force induced vibrations are superimposed to obtain the cutting tool path. Next, the information obtained from spindle motion errors is used to analytically formulate the position of each point on the machined surface. Regression models are fit to establish the relationship between form error / surface roughness and input parameters. The simulation-based approach presented here provides a quantitative bridge between process parameters/manufacturing errors and surface characterization metrics. Such a scheme would allow manufacturing engineers to pre-select processes, parameters, and capable machines to achieve design specification. This model will allow engineers to proactively control the influence of machining parameters on product quality through computer simulation, and, thus, “do things right the first time.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call