Abstract
Hepatocellular carcinoma (HCC) is the deadliest malignant tumour worldwide. The metalloproteinase ADAM17 is associated with tumour formation and development; however, its significance in HCC is unclear. This study aimed to investigate the role of ADAM17 in HCC and the correlation between its expression and immune cell infiltration. ADAM17 expression was analysed in pan-cancer and HCC tissues using The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Kaplan–Meier survival analysis displayed a negative association between ADAM17 expression and the overall survival of patients with HCC. High ADAM17 expression was linked to poor tumour/node (T/N) stage and alpha fetoprotein (AFP) levels. Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes analyses revealed the enrichment of several pathways, including epithelial–mesenchymal transition, inflammatory response, Hedgehog, and KRAS signalling, in patients with upregulated ADAM17. ADAM17 was shown to be positively correlated with immune cell infiltration and immune checkpoint expression via the Tumour Immune Estimation Resource (TIMER) database and immunohistochemistry analyses. Protein–protein interaction (PPI) network analysis revealed that ADAM17 plays a core role in cancer development and immune evasion. In vitro and in vivo experiments demonstrated that ADAM17 influences HCC growth and metastasis. In conclusion, ADAM17 is upregulated in most cancers, particularly HCC, and is critical in the development and immune evasion of HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.