Abstract

Manufacturing processes are responsible for a considerable amount of global energy consumption and world CO2 emissions. Reducing energy consumption during manufacturing is considered one of the most important strategies in contributing to the green supply chain. In this context, the authors propose a new predictive-reactive approach to control energy consumption during manufacturing processes. In addition to forecasting the energy needs, the proposed approach controls the uncertainty of energy volatility and limits energy waste during manufacturing processes. With the integration of this economic-environmental manufacturing efficiency in supply chains, and controlling uncertainty, this approach positively contributes to green and agile supply chains. A multi-objective genetic algorithm (NSGA-2) is proposed as a predictive method, and a new reactive method is developed to dynamically control the energy consumption throughout the peak energy consumption in real time. The approach was tested on the AIP-PRIMECA benchmark, which reflects a real production cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.