Abstract
This paper introduces the development of empirical predictive models and detection methods that are incorporated into a water detection framework for an industrial steelmaking electric arc furnace (EAF). The predictive models investigated in this work are designed based on different techniques such as statistical fingerprinting, artificial neural network (ANN), and multiway projection to latent structures (MPLS). Robustness issues related to each method are discussed and performance comparisons have been done for the presented techniques. Furthermore, model fusion theory has been applied to improve the prediction accuracy of the developed models’ defined output- the value of off-gas water vapor- which is known as one the most vital variables to guarantee a safe and reliable operation. Finally based on the proposed predictive models, a water leak detection methodology is introduced and implemented on an industrial AC EAF and a comprehensive discussion has been done to evaluate the performance of the developed algorithm. To this aim, two fault detection methods have been applied. Fault detection method #1 has been designed using statistical fingerprinting technique, while the other one has been developed based on machine learning-based models and also fusion of the models’ outputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.