Abstract

Deicing agents are used to dissolving the frost on road surfaces in winter and cold areas. Researchers have evaluated the impact of different deicing agents on the moisture susceptibility performance of asphalt mixtures, but they have not investigated the effect of these agents on fatigue failure and thermodynamic parameters of asphalt mixtures. Therefore, in this research, by investigating the effect of two new deicing agents of calcium magnesium acetate (CMA) and potassium acetate (PA) as well as sodium chloride (NaCl) traditional agent on moisture and fatigue performances of asphalt mixtures, predictive model of the tensile strength ratio (TSR) and the fatigue life ratio (NFR) using genetic programming (GP) based on the surface free energy (SFE) components and other properties of asphalt mixtures were presented. Nano hydrated lime (NHL) was applied as an asphalt binder modifier and an anti-stripping agent to improve the strength of asphalt mixtures. The results indicated that the saturated mixtures in CMA had the highest indirect tensile strength (ITS) and fatigue life in lower freeze-thaw cycles, while the NaCl-saturated samples had more ITS and fatigue life in higher cycles. The CMA-saturated samples had the greatest TSR and NFR. Using NHL in all saturated samples resulted in increasing TSR and NFR values. Results of SFE method showed that using NHL increased the polar, non-polar and basic components of asphalt binders and decreased their acidic components. Also, using NHL increased the total SFE amount of asphalt binder, enhancing the adhesion of aggregate and asphalt binder and cohesion in asphalt binder membrane, and as a result, improving the moisture resistance in asphalt mixtures. Using 1.5% NHL had the greatest effect on improving adhesion free energy (AFE), cohesion free energy (CFE) and detachment energy (DE). Among deicing solutions, CMA had the highest CFE, in general, and NaCl had the best DE values. PA-saturated samples had the greatest permeability of asphalt mixture (PAM) values. GP model had a high R2 96.4% and 98.3% for TSR and NFR, respectively. Using GP model to achieve the maximum TSR and NFR, the Pareto curve showed that 1.32% NHL was the optimum value for simultaneously increasing moisture resistance and fatigue life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call