Abstract
Abstract Connected vehicle fleets have formed significant component of industrial internet of things scenarios as part of Industry 4.0 worldwide. The number of vehicles in these fleets has grown at a steady pace. The vehicles monitoring with machine learning algorithms has significantly improved maintenance activities. Predictive maintenance potential has increased where machines are controlled through networked smart devices. Here, benefits are accrued considering uptimes optimization. This has resulted in reduction of associated time and labor costs. It has also provided significant increase in cost benefit ratios. Considering vehicle fault trends in this research predictive maintenance problem is addressed through hybrid deep learning-based ensemble method (HDLEM). The ensemble framework which acts as predictive analytics engine comprises of three deep learning algorithms viz modified cox proportional hazard deep learning (MCoxPHDL), modified deep learning embedded semi supervised learning (MDLeSSL) and merged LSTM (MLSTM) networks. Both sensor as well as historical maintenance data are collected and prepared using benchmarking methods for HDLEM training and testing. Here, times between failures (TBF) modeling and prediction on multi-source data are successfully achieved. The results obtained are compared with stated deep learning models. This ensemble framework offers great potential towards achieving more profitable, efficient and sustainable vehicle fleet management solutions. This helps better telematics data implementation which ensures preventative management towards desired solution. The ensemble method's superiority is highlighted through several experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.