Abstract

The burgeoning development of next-generation technologies, especially the Industrial Internet of Things (IIoT), has heightened interest in predictive maintenance (PdM). Accurate failure forecasting and prompt responses to downtime are essential for improving the industrial efficiency. Traditional PdM methods often suffer from high false alarm rates and inefficiencies in complex environments. This paper introduces a predictive maintenance framework using identity resolution and a transformer model. Devices receive unique IDs via distributed identifiers (DIDs), followed by a state awareness model to assess device health from sensor signals. A sequence prediction model forecasts future signal sequences, which are then used with the state awareness model to determine future health statuses. Combining these predictions with unique IDs allows for the rapid identification of facilities needing maintenance. Experimental results show superior performance, with 99% accuracy for the state awareness model and a mean absolute error (MAE) of 0.062 for the sequence prediction model, underscoring the effectiveness of the framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.