Abstract
This paper surveys a series of model selection approaches and presents a novel predictive information criterion (PIC) for hidden Markov model (HMM) selection. The approximate Bayesian using Viterbi approach is applied for PIC selection of the best HMMs providing the largest prediction information for generalization of future data. When the perturbation of HMM parameters is expressed by a product of conjugate prior densities, the segmental prediction information is derived at the frame level without Laplacian integral approximation. In particular, a multivariate t distribution is attained to characterize the prediction information corresponding to HMM mean vector and precision matrix. When performing model selection in tree structure HMMs, we develop a top-down prior/posterior propagation algorithm for estimation of structural hyperparameters. The prediction information is determined so as to choose the best HMM tree model. Different from maximum likelihood (ML) and minimum description length (MDL) selection criteria, the parameters of PIC chosen HMMs are computed via maximum a posteriori estimation. In the evaluation of continuous speech recognition using decision tree HMMs, the PIC criterion outperforms ML and MDL criteria in building a compact tree structure with moderate tree size and higher recognition rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.